Distributed Dynamic Reinforcement of Efficient Outcomes in Multiagent Coordination and Network Formation

نویسندگان

  • Georgios C. Chasparis
  • Jeff S. Shamma
چکیده

We analyze reinforcement learning under so-called “dynamic reinforcement”. In reinforcement learning, each agent repeatedly interacts with an unknown environment (i.e., other agents), receives a reward, and updates the probabilities of its next action based on its own previous actions and received rewards. Unlike standard reinforcement learning, dynamic reinforcement uses a combination of long term rewards and recent rewards to construct myopically forward looking action selection probabilities. We analyze the long term stability of the learning dynamics for general games with pure strategy Nash equilibria and specialize the results for coordination games and distributed network formation. In this class of problems, more than one stable equilibrium (i.e., coordination configuration) may exist. We demonstrate equilibrium selection under dynamic reinforcement. In particular, we show how a single agent is able to destabilize an equilibrium in favor of another by appropriately adjusting its dynamic reinforcement parameters. We contrast the conclusions with prior game theoretic results according to which the risk dominant equilibrium is the only robust equilibrium when agents’ decisions are subject to small randomized perturbations. The analysis throughout is based on the ODE method for stochastic approximations, where a special form of perturbation in the learning dynamics allows for analyzing its behavior at the boundary points of the state space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Decentralized Coordinated Motion Control of Two Hydraulic Actuators Handling a Common

In this paper, reinforcement learning is applied to coordinate, in a decentralized fashion, the motions of a pair of hydraulic actuators whose task is to firmly hold and move an object along a specified trajectory under conventional position control. The learning goal is to reduce the interaction forces acting on the object that arise due to inevitable positioning errors resulting from the impe...

متن کامل

A Survey of Multi-agent Coordination

Coordination is of great significance to multiagent systems, and in recent years, there has been much fruitful achievement in this area, such as refinement of dependencies under some hypothesis, the dynamic selection of coordination mechanisms, new coordination models using swarm intelligence, new methods using varied techniques like case based reasoning, reinforcement learning, distributed log...

متن کامل

Multiagent Reinforcement Learning for Urban Traffic Control Using Coordination Graphs

Since traffic jams are ubiquitous in the modern world, optimizing the behavior of traffic lights for efficient traffic flow is a critically important goal. Though most current traffic lights use simple heuristic protocols, more efficient controllers can be discovered automatically via multiagent reinforcement learning, where each agent controls a single traffic light. However, in previous work ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dynamic Games and Applications

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2012